What Causes Lake-Effect Snow Like Buffalo’s Storms?

Friday, December 30 2022 by Michael A. Rawlins via The Conversation

Share this story:

Zaria Black, 24, from Buffalo, clears off her car
AP Photo/Joshua Bessex
Zaria Black, 24, from Buffalo, clears off her car

It’s hard for most people to imagine more than 4 feet of snow in one storm, but such extreme snowfall events happen along the eastern edges of the Great Lakes.

The phenomenon is called “lake-effect snow.”

It starts with cold, dry air from Canada. As the bitter cold air sweeps across the relatively warmer Great Lakes, it sucks up more and more moisture that falls as snow.

A satellite image shows wind blowing snow across Lakes Superior, Michigan, Huron, Erie and Ontario on Nov. 20, 2014
Canadian winds pick up moisture over the Great Lakes, turning it into heavy snowfall on the far shore. NOAA

I’m a climate scientist at UMass Amherst. In the Climate Dynamics course I teach, students often ask how cold, dry air can lead to heavy snowfall. Here’s how that happens.

How dry air turns into snowstorms

Lake-effect snow is strongly influenced by the differences between the amount of heat and moisture at the lake surface and in the air a few thousand feet above it.

A big contrast creates conditions that help to suck water up from the lake, and thus more snowfall. A difference of 25 degrees Fahrenheit (14 Celsius) or more creates an environment that can fuel heavy snows. This often happens in late fall, when lake water is still warm from summer and cold air starts sweeping down from Canada. More moderate lake-effect snows occur every fall under less extreme thermal contrasts.

Lake Effect Snow
[Photo Credit: NOAA] 

The wind’s path over the lakes is important. The farther cold air travels over the lake surface, the more moisture is evaporated from the lake. A long “fetch” – the distance over water – often results in more lake-effect snow than a shorter one.

Imagine a wind out of the west that is perfectly aligned so it blows over the entire 241-mile length of Lake Erie. That’s close to what Buffalo experienced during a storm that brought 6 feet of snow to the region in November 2022.

An animation overlays wind direction on satellite imagery of snow accumulation during a lake-effect event.
Wind directions from a storm in 2016 show how lake-effect snow piles up. NOAA

Once the snow reaches land, elevation contributes an additional effect. Land that slopes up from the lake increases lift in the atmosphere, enhancing snowfall rates. This mechanism is termed “orographic effect.” The Tug Hill plateau, located between Lake Ontario and the Adirondacks in western New York, is well known for its impressive snowfall totals.

In a typical year, annual snowfall in the “lee,” or downwind, of the Great Lakes approaches 200 inches in some places.

Residents in places like Buffalo, New York, are keenly aware of the phenomenon. In 2014, some parts of the region received upwards of 6 feet of snowfall during an epic lake-effect event. The weight of the snow collapsed hundreds of roofs and led to over a dozen deaths.

Workers use heavy equipment to clear snow in Buffalo, N.Y.
[Photo Credit: Derek Gee/The Buffalo News via AP] Workers use heavy equipment to clear snow in Buffalo, N.Y.

Lake-effect snowfall in the Buffalo area is typically confined to a narrow region where the wind is coming straight off the lake. Drivers on Interstate 90 often go from sunny skies to a blizzard and back to sunny skies over a distance of 30 to 40 miles.

© 2025 K-LOVE News

Share this story:

See All News